網絡技術是從1990年代中期發展起來的新技術,它把互聯網上分散的資源融為有機整體,實現資源的全面共享和有機協作,使人們能夠透明地使用資源的整體能力并按需獲取信息。資源包括高性能計算機、存儲資源、數據資源、信息資源、知識資源、專家資源、大型數據庫、網絡、傳感器等。 當前的互聯網只限于信息共享,網絡則被認為是互聯網發展的第三階段。 無源RFID標簽本身不帶電池,依靠讀卡器發送的電磁能量工作。由于它結構簡單、經濟實用,因而獲得廣泛的應用。無源RFID標簽由RFID IC、諧振電容C和天線L組成,天線與電容組成諧振回路,調諧在讀卡器的載波頻率,以獲得最佳性能。 生產廠商大多遵循國際電信聯盟的規范,RFID使用的頻率有6種,分別為135KHz、13.56MHz、43.3-92MHz、860-930MHz(即UHF)、2.45GHz以及5.8GHz。無源RFID主要使用前二種頻率。 RFID標簽結構 RFID標簽天線有兩種天線形式:(1)線繞電感天線;(2)在介質基板上壓印或印刷刻腐的盤旋狀天線。天線形式由載波頻率、標簽封裝形式、性能和組裝成本等因素決定。例如,頻率小于400KHz時需要mH級電感量,這類天線只能用線繞電感制作;頻率在4~30MHz時,僅需幾個礖,幾圈線繞電感就可以,或使用介質基板上的刻腐天線。 選擇天線后,下一步就是如何將硅IC貼接在天線上。IC貼接也有兩種基本方法:(1)使用板上芯片(COB);(2)裸芯片直接貼接在天線上。前者常用于線繞天線;而后者用于刻腐天線。CIB是將諧振電容和RFID IC一起封裝在同一個管殼中,天線則用烙鐵或熔焊工藝連接在COB的2個外接端了上。由于大多數COB用于ISO卡,一種符合ISO標準厚度(0.76)規格的卡,因此COB的典型厚度約為0.4mm。兩種常見的COB封裝形式是IST采用的IOA2(MOA2)和美國HEI公司采用的WorldⅡ。 裸芯片直接貼接減少了中間步驟,廣泛地用于低成本和大批量應用。直接貼接也有兩種方法可供選擇,(1)引線焊接;(2)倒裝工藝。采用倒裝工藝時,芯片焊盤上需制作專門的焊球,材料是金的,高度約25祄,然后將焊球倒裝在天線的印制走線上。引線焊接工藝較簡單,裸芯片直接用引線焊接在天線上,焊接區再用黑色環氧樹脂密封。對小批量生產,這種工藝的成本較低;而對于大批量生產,最好采有倒裝工藝。 基本工作原理 無線RFID標簽的性能受標簽大小,調制形式、電路Q值、器件功耗以及調制深度的極大影響。下面簡要地介紹它的工作原理。 RFID IC內部備有一個154位存儲器,用以存儲標簽數據。IC內部還有一個通導電阻極低的調制門控管(CMOS),以一定頻率工作。當讀卡器發射電磁波,使標簽天線電感式電壓達到VPP時,器件工作,以曼徹斯特格式將數據發送回去。 數據發送是通過調諧與去調諧外部諧振回路來完成的。具體過程如下:當數據為邏輯高電平時,門控管截止,將調諧電路調諧于讀卡器的截波頻率,這就是調諧狀態,感應電壓達到最大值。如此進行,調諧與去調諧在標簽線圈上產生一個幅度調制信號,讀卡器檢測電壓波形包絡,就能重構來自標簽的數據信號。 門控管的開關頻率為70KHz,完成全部154位數據約需2.2ms。在發送完全部數據后,器件進入100 ms的休眠模式。當一個標簽進入休眠模式時,讀卡器可以去讀取其它標簽的數據,不會產生任何數據沖突。當然,這個功能受到下列因素的影響:標簽至讀卡器的距離、兩者的方位、標簽的移動以及標簽的空間分布。
網絡的神奇作用吸引著越來越多的用戶加入其中,正因如此,網絡的承受能力也面臨著越來越嚴峻的考驗―從硬件上、軟件上、所用標準上......,各項技術都需要適時應勢,對應發展,這正是網絡迅速走向進步的催化劑。
|